Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 14: 72, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25889650

RESUMO

BACKGROUND: Hedgehog acyltransferase (Hhat) catalyzes the transfer of the fatty acid palmitate onto Sonic Hedgehog (Shh), a modification that is essential for Shh signaling activity. The Shh signaling pathway has been implicated in the progression of breast cancer. METHODS: To determine the functional significance of Hhat expression in breast cancer, we used a panel of breast cancer cell lines that included estrogen receptor (ER) positive, HER2 amplified, triple negative, and tamoxifen resistant cells. We monitored both anchorage dependent and independent proliferation of these cells following depletion of Hhat with lentiviral shRNA and inhibition of Hhat activity with RU-SKI 43, a small molecule inhibitor of Hhat. RESULTS: Depletion of Hhat decreased anchorage-dependent and anchorage-independent proliferation of ER positive, but not triple negative, breast cancer cells. Treatment with RU-SKI 43 also reduced ER positive cell proliferation, whereas a structurally related, inactive compound had no effect. Overexpression of Hhat in ER positive cells not only rescued the growth defect in the presence of RU-SKI 43 but also resulted in increased cell proliferation in the absence of drug. Furthermore, depletion or inhibition of Hhat reduced proliferation of HER2 amplified as well as tamoxifen resistant cells. Inhibition of Smoothened had no effect on proliferation, indicating that canonical Shh signaling was not operative. Moreover, Hhat regulated the proliferation of both Shh responsive and non-responsive ER positive cells, suggesting a Shh independent function for Hhat. CONCLUSIONS: These data suggest that Hhat plays a critical role in ER positive, HER2 amplified, and hormone resistant breast cancer proliferation and highlights the potential promise of Hhat inhibitors for therapeutic benefit in breast cancer.


Assuntos
Aciltransferases/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/enzimologia , Receptor alfa de Estrogênio/metabolismo , Receptor ErbB-2/genética , Tamoxifeno/farmacologia , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Amplificação de Genes , Proteínas Hedgehog/metabolismo , Humanos , Lapatinib , Transporte Proteico , Quinazolinas/farmacologia , Transdução de Sinais
2.
J Biol Chem ; 290(4): 2235-43, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488661

RESUMO

Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors.


Assuntos
Aciltransferases/metabolismo , Proteínas Hedgehog/metabolismo , Palmitatos/metabolismo , Animais , Células COS , Catálise , Chlorocebus aethiops , Biologia Computacional , Retículo Endoplasmático/metabolismo , Epitopos/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Lipoilação , Microscopia de Fluorescência , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
3.
PLoS Genet ; 10(5): e1004340, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784881

RESUMO

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.


Assuntos
Aciltransferases/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Proteínas Hedgehog/metabolismo , Lipoilação/genética , Mutação de Sentido Incorreto , Transdução de Sinais/genética , Aciltransferases/química , Aciltransferases/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Testículo/embriologia
4.
J Exp Med ; 208(9): 1757-65, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21844206

RESUMO

Hematopoietic stem cells (HSCs) self-renew to maintain the lifelong production of all blood populations. Here, we show that the proliferating cell nuclear antigen-associated factor (Paf) is highly expressed in cycling bone marrow HSCs and plays a critical role in hematopoiesis. Mice lacking Paf exhibited reduced bone marrow cellularity; reduced numbers of HSCs and committed progenitors; and leukopenia. These phenotypes are caused by a cell-intrinsic blockage in the development of long-term (LT)-HSCs into multipotent progenitors and preferential loss of lymphoid progenitors caused by markedly increased p53-mediated apoptosis. In addition, LT-HSCs from Paf(-/-) mice had increased levels of reactive oxygen species (ROS), failed to maintain quiescence, and were unable to support LT hematopoiesis. The loss of lymphoid progenitors was likely due the increased levels of ROS in LT-HSCs caused by treatment of Paf(-/-) mice with the anti-oxidant N-acetylcysteine restored lymphoid progenitor numbers to that of Paf(+/+) mice. Collectively, our studies identify Paf as a novel and essential regulator of early hematopoiesis.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Hematopoese/fisiologia , Células Progenitoras Linfoides/metabolismo , Proteínas Oncogênicas/metabolismo , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/genética , Sequestradores de Radicais Livres/farmacologia , Hematopoese/efeitos dos fármacos , Leucopenia/genética , Leucopenia/metabolismo , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...